Kinetics, Mechanism and Theoretical Studies of Norbornene-Ethylene Alternating Copolymerization Catalyzed by Organopalladium(II) Complexes Bearing Hemilabile α-Amino-pyridine.
نویسندگان
چکیده
Cationic methylpalladium complexes bearing hemilabile bidentate α-amino-pyridines can serve as effective precursors for catalytic alternating copolymerization of norbornene (N) and ethylene (E), under mild conditions. The norbornyl palladium complexes in the formula of {[RHNCH₂(o-C₆H₄N)]Pd(C₇H10Me)(NCMe)}(BF₄) (R = iPr (2a), tBu (2b), Ph (2c), 2,6-Me₂C₆H₃ (2d), 2,6-iPr₂C₆H₃ (2e)) were synthesized via single insertion of norbornene into the corresponding methylpalladium complexes 1a-1e, respectively. Both square planar methyl and norbornyl palladium complexes exhibit facile equilibria of geometrical isomerization, via sterically-controlled amino decoordination-recoordination of amino-pyridine. Kinetic studies of E-insertion, N-insertion of complexes 1 and 2, and the geometric isomerization reactions have been examined by means of VT-NMR, and found in excellent agreement with the results estimated by DFT calculations. The more facile N-insertion in the cis-isomers, and ready geometric isomerization, cooperatively lead to a new mechanism that accounts for the novel catalytic formation of alternating COC.
منابع مشابه
Influence of diethyl zinc on ethylene-norbornene copolymerization
Ethylene-norbornene copolymers were synthesized with a homogeneous catalyst system based on bis(imino) pyridine iron with the addition of diethyl zinc (DEZ) as alkyd transfer agent to promote immortal copolymerization. The addition of DEZ did not influence the catalytic activity in copolymerization with 7.5 mmol of norbornene (NB), but in the reactions with 70 mmol, the comonomer promoted an in...
متن کامل[ONN]-type amine pyridine(s) phenolate-based oxovanadium(V) catalysts for ethylene homo- and copolymerization.
A series of oxovanadium(V) complexes containing amine pyridine(s) phenolate ligands [ONN] (2a-f) have been synthesized in high yields (68-83%) by reacting VO(O(n)Pr)3 with 1.0 equiv. of the ligands in CH2Cl2. These complexes were characterized by (1)H, (13)C and (51)V NMR spectroscopy and elemental analysis. X-ray structural analysis for 2a, 2c and 2d revealed that these complexes adopt a six-c...
متن کاملCopolymerization of ethylene with norbornene catalyzed by cationic rare earth metal fluorenyl functionalized N-heterocyclic carbene complexes.
Rare earth metal bis(alkyl) complexes attached by fluorenyl modified N-heterocyclic carbene (NHC) (Flu-NHC)Ln(CH(2)SiMe(3))(2) (Flu-NHC = (C(13)H(8)CH(2)CH(2)(NCHCCHN)C(6)H(2)Me(3)-2,4,6); Ln = Sc (2a); Y (2b); Ho (2c); Lu (2d)), ((tBu)Flu-NHC)Ln(CH(2)SiMe(3))(2) ((tBu)Flu-NHC = 2,7-(t)Bu(2)C(13)H(6)CH(2)CH(2)(NCHCCHN)C(6)H(2)Me(3)-2,4,6; Ln = Sc (1a); Lu (1d)) and attached by indenyl modified ...
متن کامل[ONNO]-type amine bis(phenolate)-based vanadium catalysts for ethylene homo- and copolymerization*
The synthesis and solution and solid-state structural characterization of a family of amine bis(phenolate) [ONNO]-vanadium complexes is reviewed. These compounds have oxi dation states ranging from vanadium(II) to vanadium(V), and were evaluated as olefin polymerization catalysts. In association with EtAlCl2 cocatalyst, we studied the homo polymerization of ethylene, propene, and 1-hexene, as w...
متن کاملTheoretical study on the mechanism of hydromethoxylation catalyzed by palladium(II) complex
Palladium (II) coordination complexes catalyze the reaction of alcohols with ketones to yield ethers. During the catalytic cycle, the alcohol adds selectively to the β-carbon (anti-Markovnikov). In this work, mechanism and kinetics for the reaction of methanol with methyl vinyl ketone (MVK), being catalyzed by Pd, has been theoretically investigated in detail. Using quantum mechanical approach,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 7 شماره
صفحات -
تاریخ انتشار 2017